
sensors

Article

YOLO-Tomato: A Robust Algorithm for Tomato
Detection Based on YOLOv3

Guoxu Liu 1,2 , Joseph Christian Nouaze 2, Philippe Lyonel Touko Mbouembe 2 and
Jae Ho Kim 2,*

1 Computer Software Institute, Weifang University of Science and Technology, Shouguang 262-700, China;
pandalgx@126.com

2 Department of Electronics Engineering, Pusan National University, Busan 46241, Korea;
krxsange@pusan.ac.kr (J.C.N.); lyoneltouko@gmail.com (P.L.T.M.)

* Correspondence: jhkim@pusan.ac.kr; Tel.: +82-51-510-2450

Received: 11 March 2020; Accepted: 7 April 2020; Published: 10 April 2020
����������
�������

Abstract: Automatic fruit detection is a very important benefit of harvesting robots. However,
complicated environment conditions, such as illumination variation, branch, and leaf occlusion as
well as tomato overlap, have made fruit detection very challenging. In this study, an improved tomato
detection model called YOLO-Tomato is proposed for dealing with these problems, based on YOLOv3.
A dense architecture is incorporated into YOLOv3 to facilitate the reuse of features and help to learn a
more compact and accurate model. Moreover, the model replaces the traditional rectangular bounding
box (R-Bbox) with a circular bounding box (C-Bbox) for tomato localization. The new bounding
boxes can then match the tomatoes more precisely, and thus improve the Intersection-over-Union
(IoU) calculation for the Non-Maximum Suppression (NMS). They also reduce prediction coordinates.
An ablation study demonstrated the efficacy of these modifications. The YOLO-Tomato was compared
to several state-of-the-art detection methods and it had the best detection performance.

Keywords: tomato detection; harvesting robots; dense architecture; deep learning

1. Introduction

Fruits harvesting is very labor intensive and time-consuming work. With the development of
artificial intelligence, much of this work can be replaced by a harvesting robot [1]. Harvesting with
robots is divided into two steps. First, the fruit detection is performed using a computer vision system.
Second, a manipulator is guided to pick the fruits according to the detection results. Of these two steps,
fruit detection is the most crucial and challenging. It not only conditions the subsequent operation
of the manipulator, but it also determines the detection accuracy. The complicated conditions and
nonstructural environment make this task very challenging.

Many researchers have studied fruit detection over the past several decades. Significant
improvements have been made [1,2]. Linker et al. [3] used color and texture information to classify
green apples. A comparison was performed between a detected circle using this information and a
heuristic model to determine the results. An accuracy of 85% was reported. Illumination variation
such as direct sunlight and color saturation had a large impact on the results. Wei et al. [4] proposed
a color-based segmentation method to extract fruits from background. The OHTA color space was
used for segmentation. It may be inferred that the performance is easily affected by the illumination.
Kelman et al. [5] proposed a shape analysis method for localization of mature apples. This method
first identified the edges in the image using a canny filter. It then detected the edges that correspond to
three-dimensional convex objects, using a pre-processing operation and convexity test. They noted
that performance is greatly influenced by illumination and leaves that have similar convex surfaces to

Sensors 2020, 20, 2145; doi:10.3390/s20072145 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3668-4569
http://dx.doi.org/10.3390/s20072145
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/7/2145?type=check_update&version=2

Sensors 2020, 20, 2145 2 of 20

apples. Payne et al. [6] proposed a color and texture-based algorithm to estimate mango crop yield.
The algorithm was a significant improvement over their previous method [7]. However, the situation
was constrained by artificial lighting. In addition, the algorithm used a complicated decision process
with many fixed thresholds, making it hard to adapt to other fruits or environments. Zhao et al. [8]
used a feature images fusion method to recognize mature tomatoes. They adopted the wavelet
transformation to fuse the a*-component and I-component from the L*a*b* color space and luminance,
in-phase, quadrature-phase (YIQ) color space, respectively. An optimal threshold was then applied on
the fusion image to segment tomatoes from the background. They reported a 93% accuracy. Since only
color features were used in their study, the results were affected by the illumination.

The growth and development of artificial intelligence techniques have led to more research
into applying machine learning to computer vision tasks in agriculture. Lv et al. [9] used a Support
Vector Machine (SVM) trained only on RGB color space for fruit and branch identification in natural
scenes. They reported that this method obtained an accuracy of 92.4% for fruits, and performed much
better than previous threshold-based methods. Nevertheless, the results were prone to be affected by
illumination. Kurtulmus et al. [10] conducted experiments using several different classifiers, including
statistical classifiers, a neural network, and an SVM for immature peach detection. The circular
Gabor filter and principle component analysis were applied for feature extraction. The best accuracy
achieved was 84.6%. Performance was restricted to the variations of illumination and occlusion.
Yamamoto et al. [11] combined a pixel-based segmentation and a blob-based segmentation strategy for
tomato detection. The strategy was based on a decision tree classifier and a random forest classifier.
Recall and precision were 80% and 88%. Zhao et al. [12] used a combination of AdaBoost classifier
and color analysis for tomato detection. They adopted the Haar-like feature to train the classifier.
Although the method can get reasonable results, its speed is relatively low and cannot satisfy the
real-time requirement for a harvesting robot. Luo et al. [13] also proposed an AdaBoost and color
feature based framework for grape cluster detection. The experiments demonstrated that this method
can partly reduce the influence of weather condition, leaves occlusion, and illumination variation.
Liu et al. [14] proposed a coarse-to-fine framework for mature tomato detection. Their study adopted an
SVM and False Color Removal method. Recall and precision reached 90.00% and 94.41%, respectively.
However, the method is not satisfactory for overlapped and occluded tomatoes.

Although traditional machine learning brought great improvements to computer vision, most of
the methods are based on handcrafted features which have several drawbacks. First, these features are
complicated to design. Second, such features have low-level abstraction and can only adapt to some
specific conditions. This results in a weak flexibility. In addition, it is difficult to transfer these methods
from one kind of fruit to several others. With the breakthrough of deep learning on computer vision
tasks [15,16], these limitations of traditional machine learning were conquered, since features extracted
with a deep convolutional neural network (DCNN) are more abstract and are better able to generalize.
In particular, the prevalence of big data has paved the way for the applications of deep learning
techniques, including agriculture vision tasks [17]. Sa et al. [18] applied the Faster R-CNN [19] detector
to fruit detection. The information from the RGB image and Near-Infrared image was used with two
fusion methods. This method obtained results better than previous methods. However, it is difficult for
the method to detect small fruits, and its speed still needs to be improved for real-time in-field operation
of a harvesting robot. Bargoti et al. [20] also proposed a fruit detection model in orchards, based on
the Faster R-CNN method. In their report, an F1 score of more than 90% was achieved. Most of the
missing fruits came from the case where fruits appear in tight clusters. Rahnemoonfar et al. [21] used a
modified Inception-ResNet architecture [22] for fruit counting. This method achieved a 91% average
accuracy with real images. However, the method just counted fruit, and did not implement detection.
The You Only Look Once (YOLO) models were proposed by Redmon et al. for object detection [23–25].
Compared with previous region proposal based detectors [19,26] that perform detection in a two-stage
pipeline, the YOLO models directly predict the bounding boxes and their corresponding classes
with a single feed forward network. Thus, they can increase the speed significantly while keeping a

Sensors 2020, 20, 2145 3 of 20

reasonable accuracy, making them the true sense of real-time detectors. However, there are few studies
on fruit detection using the YOLO models.

A detection model based on the DCNN was proposed in this study to detect tomatoes in complex
environment conditions. There are two main ideas proposed to improve detection performance.

First, the model incorporated the dense architecture [27] into YOLOv3 [25] to facilitate the reuse
of features and make the model learn richer features for tomato representation.

Second, a C-Bbox was proposed to replace the traditional R-Bbox for tomato localization. Since
the new bounding boxes match tomatoes better, more accurate IoU could be obtained between a
tomato and its corresponding C-Bbox as well as between any two predicted C-Bboxes. They also
reduce prediction coordinates.

The experiments demonstrated that the proposed method can achieve a high detection accuracy,
and it can also reach a real-time detection speed.

The remainder of this paper is organized as follows. Section 2 describes the theoretical background
of detection methods. Section 3 proposes a tomato detection method. Section 4 discusses experimental
results, using the proposed method, and Section 5 draws conclusions from this paper.

2. Theoretical Background

2.1. YOLO Series

The YOLOv3 [25] is one of the state-of-the-art object detection methods that evolved from
YOLO [23] and YOLOv2 [24]. Unlike Faster R-CNN [19], it is a single-stage detector that formulates
the detection problem as a regression problem.

The YOLO framework is illustrated in Figure 1. The main concept is to divide the input image
into a S×S grid, and to make detections in each grid cell. Each cell predicts B bounding boxes along
with the confidence of these boxes. The confidence can reflect whether an object exists in the grid cell
and, if it does, the IoU of the ground truth (GT) and predictions. The confidence can be formulated in
Equation (1):

Con f idence = Pr(Object)× IoU(GT, pred) (1)

where Pr (Object) ∈ [0, 1].
Each grid cell also predicts C class probabilities for the object. In total, (5+C) values are predicted

by each cell: x, y, w, h, con f idence and C class probabilities. (x, y) represent the center coordinates of
the box, and (w, h) represent the width and height of the box, respectively.

S × S grid on input

Bounding boxes + confidence

Class probability map

Tomato detection results

Figure 1. YOLO model detection.

Sensors 2020, 20, 2145 4 of 20

Inspired by Faster R-CNN, YOLOv2 borrowed an idea of the prior anchors for detection, which
can simplify the problem and ease the learning process of the network. It also draws on some other
concepts such as batch normalization [28] and skip connection [29]. Compared to YOLO, YOLOv2
significantly improves localization and recall.

Based on YOLOv2, Redmon proposed a more powerful detector—YOLOv3. Motivated by the
feature pyramid framework, like in [30], YOLOv3 predicts objects in three different scales. This can
remedy the object size variation problem.

2.2. Densely Connected Block

To better facilitate the reuse of features, Huang [27] proposed a densely connected convolutional
network (DenseNet). The characteristic of DenseNet is that, for each layer in a dense block, it takes
output of all the preceding layers as input and serves as input for all subsequent layers. Thus, for L
layers, the network has L(L+1)

2 connections. With this property, the DenseNet can significantly relieve
the gradient vanishing problem, make better reuse of features, and facilitate feature propagation.
Figure 2 shows an example of a 4-layer dense block. As a consequence, the lth layer xl takes as input
the feature maps of all preceding (l − 1) layers, x1, . . . , xl−1, as illustrated in Equation (2):

xl = Hl [x0, x1, . . . , xl−1]) (2)

where [x0, x1, . . . , xl−1] represents the concatenation of the output feature maps generated in layers 0
to l − 1, and Hl(·) is a combinatory function of several sequential operations, i.e., BN [28], ReLU [31],
and convolution. In this study, Hl(·) denotes BN-ReLU-Conv1×1-BN-ReLU-Conv3×3.

𝑥0 𝑥1 𝑥2 𝑥3

T
ra

n
s
it
io

n
 L

a
y
e

r

Figure 2. A 4-layer dense block. Each layer takes all preceding feature-maps as input and serves as
input for all subsequent layers. Hi denotes the operation BN-ReLU-Conv1×1-BN-ReLU-Conv3×3.

2.3. The Non-Maximum Suppression for Merging Results

Since object detectors usually perform detection in a sliding window form [32] or in many densely
distributed prior anchors [33], there may be several detections corresponding to the same object.
The NMS method is used to remove the redundant detections and to find the best match.

NMS is widely used in many types of tasks [32,33] and has proved its efficiency. The process is
summarized in Algorithm 1. Since R-Bboxes are commonly used to localize objects, the IoU of adjacent
R-Bboxes is adopted in NMS for merging the results.

Sensors 2020, 20, 2145 5 of 20

Algorithm 1 The pseudo code of NMS method

Input: B = {b1, · · · , bN}, C = {c1, · · · , cN}, λnms

B is the list of initial detection boxes
C contains corresponding detection confidences
λnms is the NMS threshold

Output: List of final detection boxes O
1: O ← {}
2: while B 6= ∅ do

3: m← argmax C
4: O ← O ∪ bm; B ← B − bm; C ← C − cm
5: for bi ∈ B do

6: if IoU(bm, bi) ≥ λnms then

7: B ← B − bi; C ← C − ci
8: end if
9: end for

10: end while

3. Materials and Methods

3.1. Image Acquisition

The tomato datasets used in this paper were collected in a period from December 2017 to
November 2019 in Vegetable High-tech Demonstration Park, Shouguang, China. The images
were captured using a digital camera (Sony DSC-W170, Tokio, Japan) with a 3648 × 2056-pixel
resolution. All the images were taken under natural daylight conditions, including several disturbances:
illumination variation, occlusion, and overlap.

A total of 966 tomato images were captured and divided into a training set and a test set.
The training set consisted of 725 images which contained 2553 tomatoes, and the remaining 241
images which included 912 tomatoes made up the test set. Figure 3 shows some samples from the
dataset under different environments.

(a) Separated tomatoes (b) A cluster of tomatoes (c) Occlusion by leaves

(d) Shading conditions (e) Sunlight conditions

Figure 3. Tomato samples with different growing circumstances: (a) two separated tomato, (b) a cluster
of tomatoes, (c) occlusion case, (d) shading conditions, and (e) sunlight conditions.

Sensors 2020, 20, 2145 6 of 20

3.2. Image Augmentation

The data augmentation technique was used in this study. While training, before input into the
model, each image was randomly sampled by one of the following options:

– the entire original image
– scaling and cropping

For the scaling and cropping operation, the image was first scaled with a random factor falling in
the range [1.15, 1.25]. Then, a patch with the same size as the original image was randomly cropped
from the scaled image. After the sampling step, each image was horizontally flipped with a probability
of 0.5. Some examples of the augmentation are shown in Figure 4.

(a) Original image (b) Scaling and cropping (c) Horizontal flip

(d) Original image (e) Scaling and cropping (f) Horizontal flip

Figure 4. Some examples of image augmentation operations: (left): original images, (middle): scaling
and cropping, and (right): horizontal flip.

3.3. The Proposed YOLO-Tomato Model

An overview of the proposed tomato detection model is shown in Figure 5. On the basis of the
YOLOv3 model, a dense architecture was incorporated for better feature reuse and representation.
Furthermore, a C-Bbox was proposed instead of the traditional R-Bbox. The C-Bbox can match the
shape of a tomato better, consequently making a more precise localization. Moreover, the C-Bbox
can derive a more accurate IoU between the predictions, which plays an important role in the NMS
process, and thus improve the detection results. The proposed model is called YOLO-Tomato. Figure 6
shows a flowchart of training and detection process of YOLO-Tomato. Sections 3.4 and 3.5 present
more details.

Sensors 2020, 20, 2145 7 of 20

⋯

T
ra

n
s
itio

n

Dense Architecture

Concatenation

416

416

416

416

32

64

208

208

13

13

512

13

13

1024

13

26

256
256

26

768

26

26

256

26

26

26

26

512

15

13

13

15

26

26

26

26

128
128

52

52

1152

52

52

128

52

52

256

52

52

15

52

52

13

Scale 1

Scale 2

Scale 3

52 × 52 × 1024

26 × 26 × 512

Input

Detection results

C-Bbox

Figure 5. An overview of the proposed model.

Detection Phase

Input image

Resized to

416 × 416

Trained

YOLO-Tomato

Obtain predicted

C-Bboxes (ො𝑥, ො𝑦, Ƹ𝑟, መ𝐶, Ƹ𝑝)

NMS

Detection

Results

Training Phase

Training images

Augmentation

and resize

YOLO-Tomato

Output (𝑡𝑥, 𝑡𝑦 , 𝑡𝑟 , 𝑡𝑜, 𝑡𝑝)

corresponding to each anchor

Obtain predicted

C-Bboxes (ො𝑥, ො𝑦, Ƹ𝑟, መ𝐶, Ƹ𝑝)

GT C-Bboxes

(𝑥, 𝑦, 𝑟, 𝐶, 𝑝)

Loss

Output (𝑡𝑥, 𝑡𝑦 , 𝑡𝑟 , 𝑡𝑜, 𝑡𝑝)

for each anchor

Reach predefined

epochs?

Back

propagation

End End

Y

N

用这个

Figure 6. A flowchart of training and detection process of YOLO-Tomato.

3.4. Dense Architecture for Better Feature Reuse

It has been proven in [27] that direct connection between any two layers allows the feature reuse
throughout the networks and therefore helps to learn more compact and accurate models. To better
reuse the features for tomato detection, a densely connected architecture is incorporated into the
YOLOv3 framework, as in Figure 5. With this modification, the extracted features can be utilized more

Sensors 2020, 20, 2145 8 of 20

efficiently, especially for those from low-level layers, which can be expected to improve the accuracy
of detection.

A specification of dense architecture used in this study is shown in Figure 7. There are five dense
blocks in this architecture, which consists of 6, 12, 24, 16, and 16 dense layers, respectively. For each
dense layer, a 1× 1 bottleneck layer [29] and a 3× 3 convolutional layer are stacked together. To make
the model more compact, a transition layer was placed between (any) two consecutive dense layers.
The structure of a dense block is illustrated in Figure 2. Owing to the direct connection between
any two layers inside the dense block, the network can learn more rich features and improve the
representation of tomatoes. In the original YOLOv3 model, there are six convolutional layers in front
of each of the detection layers. Due to the better use of features by dense architecture, the original
six layers were pruned to two layers before each detection layer, by removing the first four layers.
The results of the experiment demonstrate the effectiveness of the proposed architecture in Section 4.

Convolutional 32 3 × 3 416 × 416

Convolutional 64 3 × 3 / 2 208 × 208

6 ×
Dense Layer

64 1 × 1
208 × 208

32 3 × 3

12 ×
Dense Layer

64 1 × 1
104 × 104

32 3 × 3

24 ×
Dense Layer

64 1 × 1
52 × 52

32 3 × 3

16 ×
Dense Layer

64 1 × 1
26 × 26

32 3 × 3

16 ×
Dense Layer

64 1 × 1
13 × 13

32 3 × 3

Convolutional 128 1 × 1 208 × 208

Avg Pooling 2 × 2 / 2 104 × 104

Convolutional 256 1 × 1 104 × 104

Avg Pooling 2 × 2 / 2 52 × 52

Convolutional 512 1 × 1 52 × 52

Avg Pooling 2 × 2 / 2 26 × 26

Convolutional 512 1 × 1 26 × 26

Avg Pooling 2 × 2 / 2 13 × 13

Layer Filters Size Output

Convolutional 256 1 × 1 13 × 13

Up Sampling × 2 26 ×26

Concatenate 26 × 26

Convolutional 128 1 × 1 26 × 26

Up Sampling × 2 52 × 52

Concatenate 52 × 52

Dense Architecture

Convolutional 15 1 × 1 13 × 13

Convolutional 1024 3 × 3 13 × 13

Convolutional 256 1 × 1 26 × 26

Convolutional 128 1 × 1 52 × 52

Convolutional 512 1 × 1 13 × 13

Convolutional 15 1 × 1 26 × 26

Convolutional 512 3 × 3 26 × 26

Convolutional 15 1 × 1 52 × 52

Convolutional 256 3 × 3 52 × 52

Scale 1

13 × 13 × 15

Scale 2

26 × 26 × 15

Scale 3

52 × 52 × 15

Detection

Layers

最终版本

Figure 7. Dense architecture of the proposed model.

3.5. Circular Bounding Box

For general object detection tasks, e.g., Pascal VOC [34] and COCO [35], an R-Bbox is usually
adopted to localize the target since the shape of objects varies with the classes. However, when
focusing on a specific task, a customized shape of a bounding box could be used to improve the
detection performance. In this study, since the detection target is tomato (a circle shape), a C-Bbox is
proposed. Due to the better match of tomatoes and the C-Bboxes, it is believed the proposed C-Bbox
has two main advantages when compared to the traditional R-Bbox. On one hand, the IoU of two
predicted C-Bboxes is more accurate than that of R-Bboxes, which plays an important role in the NMS
process. On the other hand, the C-Bbox has less parameters than R-Bbox, making it easier for the CNN
model to regress from the prior anchors to the predictions. The C-Bbox is illustrated in more detail in
the following.

Sensors 2020, 20, 2145 9 of 20

3.5.1. IoU of Two C-Bboxes

Given two circles O1 and O2, which are overlapped as in Figure 8, it can be shown that, if their
radii R and r satisfy Equation (3), the overlap area Aoverlap can be derived as in Equation (4):

|R− r| ≤ d ≤ |R + r| (3)

where d is the distance of the centers of the two circles O1 and O2.

Aoverlap = θR2 + ϕr2 − 1
2

R2 sin 2θ − 1
2

r2 sin 2ϕ (4)

where θ and ϕ can be derived as in Equations (5) and (6):

θ = arccos
R2 + d2 − r2

2Rd
(5)

ϕ = arccos
r2 + d2 − R2

2rd
(6)

Then, the IoU of O1 and O2 can be calculated in Equation (7):

IoU (O1, O2) =
Aoverlap

πR2 + πr2 − Aoverlap
(7)

If the circle O2 is entirely contained in circle O1, their IoU can be calculated as in Equation (8):

IoU (O1, O2) =
r2

R2 (8)

𝜃

𝜑

𝑂1

𝑂2
𝐼

𝑑

𝑅

𝑟

Figure 8. Overlap of two C-Bboxes.

3.5.2. C-Bbox Location Prediction and Loss Function

Since the R-Bbox was replaced with the proposed C-Bbox for tomato detection, the prior anchors
would also be set as circular anchors. As a result, the modified model predicts only three coordinates
for each C-Bbox – tx, ty, tr. If the grid cell has an offset of (cx, cy) from the top left corner of the image,
and the prior anchors have a radius of pr, the predictions will be calculated as in Equations (9)–(11).
Figure 9 is an illustration of the C-Bbox prediction:

x̂ = σ (tx) + cx (9)

ŷ = σ
(
ty
)
+ cy (10)

r̂ = pretr (11)

Sensors 2020, 20, 2145 10 of 20

where σ(·) is sigmoid function.

𝑐𝑥

𝑐𝑦

∙
𝜎(𝑡𝑥)

𝜎(𝑡𝑦)

ො𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥
ො𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦
Ƹ𝑟 = 𝑝𝑟𝑒

𝑡𝑟

Ƹ𝑟
𝑝𝑟

Figure 9. C-Bbox prediction. The black dotted circle indicates the prior anchor, and the red circle is
the prediction.

Accordingly, the loss function used for C-Bbox prediction was adjusted as in Equation (12):

Loss = λcoord

S2

∑
i=1

B

∑
j=1

1
obj
i,j

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+ λcoord

S2

∑
i=1

B

∑
j=1

1
obj
i,j (
√

ri −
√

r̂i)
2

+
S2

∑
i=1

B

∑
j=1

1
obj
i,j
(
−Ci log Ĉi

)
+ λnoobj

S2

∑
i=1

B

∑
j=1

1
noobj
i,j

[
−(1− Ci) log(1− Ĉi)

]
+

S2

∑
i=1

B

∑
j=1

1
obj
i,j ∑

c∈classes
[−pi(c) log p̂i(c)− (1− pi(c)) log (1− p̂i(c))]

(12)

where x̂, ŷ, r̂ are the center coordinates and radius of the C-Bbox. Ĉ denotes the confidence for
prediction, and p̂ (c) is the predicted class probability. x, y, r, C, and p(c) are the counterparts for
GT. 1obj

i,j indicates that the jth bounding box in grid cell i matches the object in the cell, while 1noobj
i,j

indicates the remaining non-matched bounding boxes. S2 denotes the S× S grid cells, and B is the
number of prior anchors in each cell. To remedy the imbalance problem between positive and negative
samples, λcoord and λnoobj are set to 5 and 0.5, respectively, as in [23].

3.6. Experimental Setup

In this study, the experiments were conducted on a computer that has Intel i5 (Santa Clara, CA,
USA), 64-bit 3.30 GHz quad-core CPUs, and a NVIDIA GeForce GTX 1070Ti GPU.

The model receives images of 416 × 416 pixels as inputs. Due to GPU memory constraints,
the batch size was set to 8. The model was trained for 160 epochs with an initial learning rate of 10−3,
which was then divided by 10 after 60 and 90 epochs. The momentum and weight decay were set to
0.9 and 0.0005, respectively.

Sensors 2020, 20, 2145 11 of 20

A series of experiments were conducted to evaluate the performance of the proposed method.
The indexes for evaluation of the trained model are defined as follows:

Recall =
TP

TP + FN
(13)

Precision =
TP

TP + FP
(14)

where TP, FN, and FP are abbreviations for true positives (correct detection), false negatives (miss),
and false positives (false detection).

To better show the comprehensive performance of the model, F1 score was adopted as a trade-off
between the recall and precision, defined in Equation (15):

F1 =
2× Recall × Precision

Recall + Precision
(15)

Another evaluation metric for object detection—Average Precision (AP) [34,36]—was also used
in this study. It can show the overall performance of a model under different confidence thresholds,
and is defined as follows:

AP = ∑
n
(rn+1 − rn) pinterp (rn+1) (16)

with
pinterp (rn+1) = max

r̃:r̃≥rn+1
p(r̃) (17)

where p(r̃) is the measured precision at recall r̃.

4. Results and Discussion

4.1. Average IoU Comparison of C-Bbox and R-Bbox

In this study, to evaluate the performance of the proposed C-Bbox, as in [24], the average IoU
between each type of the bounding boxes and GTs of the training set was calculated and compared.
As shown in Figure 10, the average IoU of the C-Bbox is higher than that of the R-Bbox for all of the
cluster numbers. This is as expected since the C-Bbox intrinsically matches the shape of tomatoes
better than the R-Bbox. This advantage of the C-Bbox makes it easier for the detection model to regress
from the prior anchors to the GTs. In this study, nine clusters were adopted as prior anchors for
tomato detection.

Sensors 2020, 20, 2145 12 of 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Clusters

0.45

0.55

0.65

0.75

0.85

0.95

Av
er

ag
e

Io
U

C-Bbox
R-Bbox

Figure 10. Clustering anchor dimensions of R-Bbox and C-Bbox. The k-means clustering was used
to get the prior anchors. As in [24], the IoU was adopted instead of the Euclidean distance as the
evaluation metric. As indicated by the dotted vertical line, nine clusters were adopted as the prior
anchors, and were then divided into three parts and assigned to each of the three scales for detection.

4.2. Ablation Study on Different Modifications

An ablation analysis of the effect of the dense architecture and C-Bbox was studied.
For convenience, incorporation of only the dense architecture is called YOLO-dense. Figure 11
shows the precision–recall curves (P–R curves). The markers indicate the points where recall and
precision are obtained when the confidence threshold equals 0.8. The corresponding values are shown
in Table 1. The table shows that incorporation of dense architecture brought a significant rise of
both the recall and precision, consequently resulting in an improvement of the F1 score from 91.24%
to 93.26%. This demonstrates the effectiveness of the feature reuse of the dense connection, which
presents a richer representation of tomatoes. Furthermore, if the R-Bbox was replaced by the proposed
C-Bbox, the F1 score of the model would increase about 0.65%, mainly benefiting from the better
match between the C-Bbox and tomatoes. In accordance with the P–R curves in Figure 11, the AP was
improved with each modification, as shown in Table 1.

0.6 0.7 0.8 0.9 1.0
Recall

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

YOLOv3
YOLO-dense
YOLO-Tomato

Figure 11. P–R curves of different methods for ablation study. The markers indicate the points where
recall and precision are obtained when the prediction confidence threshold equals 0.8.

Sensors 2020, 20, 2145 13 of 20

Table 1. Ablation study of dense architecture and circular bounding box.

Methods Dense Architecture C-Bbox Recall (%) Precision (%) F1 (%) AP (%)

YOLOv3 90.89 91.60 91.24 94.06

YOLO-dense D 92.65 93.88 93.26 95.56

YOLO-Tomato D D 93.09 94.75 93.91 96.40

4.3. The Network Visualization

Although it is difficult to understand the mechanism of the deep neural network clearly, some
visual clues are shown in this section that DCNN could capture some discriminative features.
Figure 12a shows 32 filters of the first convolutional layer of the model. One can see that some filters
learned edge information of different directions, while other filters presented some color features, such
as red, green, and brown, etc. To show the effectiveness of the model for tomato detection, some of the
feature maps obtained from different convolutional layers (80, 86, and 92) are shown in Figure 12c–e.
These layers correspond to different detection scales. The corresponding input image is shown in
Figure 12b with manual marking (cyan circles) of the tomatoes for a better visualization. The first
feature map shows that only the regions corresponding to the headmost tomatoes are activated.
Although occluded by other two tomatoes, the region of the middle tomato was still activated weakly.
The top and right regions where smaller tomatoes are present are activated in the second feature map.
The region for the smallest tomato in the bottom left is activated in the third feature map. Combining
the results from different scales, all of the tomatoes are detected by the model.

(a) (b) (c)

(d) (e)

Figure 12. (a) the 32 3× 3 filters of Conv1 of the network, (b) the input image (cyan circles are marked
manually for a better visualization), and (c–e), one of the feature activations from the 80th, 86th,
and 92th convolutional layers, respectively.

4.4. Impact of Training Dataset Size on Tomato Detection

The influence of the size of the dataset for tomato detection was also analyzed. Eight different
sizes of training datasets were set up for evaluation. In addition to the whole training set, 50, 150, 250,
350, 450, 550, and 650 tomato images were randomly selected from the training set to form the new
datasets. Recall, precision, F1 score, and the AP are shown in Table 2. The corresponding P–R curves
are shown in Figure 13.

Sensors 2020, 20, 2145 14 of 20

From the results, one can conclude that the performance of the detection model improves with
the increase of the dataset size. As shown in Figure 13b, if the number of images is less than 450,
the F1 score increases rapidly with the growth of the number. When the size of the dataset exceeds 450,
the boost speed of the performance slows down gradually and tends to saturate.

Table 2. The detection performance with different size of datasets.

Dataset Size Recall (%) Precision (%) F1 (%) AP (%)

50 42.32 43.13 42.72 34.37

150 63.59 64.37 63.98 60.58

250 72.37 73.25 72.81 74.61

350 78.07 79.02 78.54 81.51

450 84.87 85.90 85.38 89.94

550 88.48 89.56 89.02 93.57

650 91.23 92.34 91.78 95.07

725 93.09 94.75 93.91 96.40

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

50 images
150 images
250 images
350 images
450 images
550 images
650 images
725 images

(a)

0 100 200 300 400 500 600 700
Images

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 sc

or
e

(b)

Figure 13. (a) P–R curves, and (b) the F1 scores of the models trained with different size of datasets.

4.5. Performance of the Proposed Model under Different Lighting Conditions

Robustness of the proposed model to different illumination conditions was examined in this
study. Among all the tomatoes, 487 were presented under sunlight. The remaining 425 were in
shading conditions. In Table 3, the correct identification rate (or recall) for the sunlight conditions
reaches 93.22%, which is comparable to that of shading conditions (92.94%). Among all the detected
tomatoes under sunlight conditions, 5.22% of them were falsely detected and belong to the background,
while for the shading conditions, this rate is 5.28%. The results indicate that the proposed model is
robust to illumination variation, which is a key factor for harvesting robot to operate under complex
environments. Some examples of detection results are shown in Figure 14.

Table 3. The detection results of the proposed method under different lighting conditions.

Illumination Tomato Count
Correctly Identified Falsely Identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Sunlight 487 454 93.22 25 5.22 33 6.78

Shading 425 395 92.94 22 5.28 30 7.06

Sensors 2020, 20, 2145 15 of 20

(a) Sunlight conditions (b) Shading conditions

Figure 14. Some examples of the detection results under different lighting conditions.

4.6. Performance of the Proposed Model under Different Occlusion Conditions

To evaluate the performance of the proposed model under different occlusion conditions,
the tomatoes were divided into slight and severe occlusion cases according to their occlusion level.
Severe cases included tomatoes being blocked by leaves, stems, or other tomatoes by more than 50%
degree. Others were identified as slight cases.

The results are shown in Table 4. Under slight occlusion conditions, 94.58% of the tomatoes were
detected. That was about 4.5% higher than the severely occluded ones. Under severe occlusion cases,
the presence of the tomatoes was quite different from that of the intact ones, accounting for the loss
of some semantic information. Some examples are shown in Figure 15. Of note, due to the severe
overlap or occlusion, the green tomato in the left image and the red tomato in the right image were
both missed by the proposed detector. Nevertheless, this is not a vital issue since, for harvesting robots,
the detection and picking processes were operated alternately. Hidden tomatoes would appear after
picking the front tomatoes. The detection accuracy is expected to improve with the incorporation of
contextual information like calyx. Another potential improvement would occur when zooming in on
candidate regions by approaching the cameras to the tomatoes, and then only performing detection on
these regions.

Table 4. The performance of the proposed model under different occlusion conditions.

Occlusion Condition Tomato Count
Correctly Identified Falsely Identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Slight case 609 576 94.58 22 3.68 33 5.42

Severe case 303 273 90.10 25 8.39 30 9.90

(a) (b)

Figure 15. Some missed detection results due to severe occlusion by leaves or other tomatoes: (a) the
green tomato which was largely covered by the red one was not detected, and (b) the red tomato was
missed due to severe occlusion by leaves, stems and other tomatoes.

Sensors 2020, 20, 2145 16 of 20

4.7. Comparison of Different Algorithms

To validate the performance of the proposed YOLO-Tomato model, other state-of-the-art detection
methods were evaluated for comparison—YOLOv2 [24], YOLOv3 [25], and Faster R-CNN [19].

Figure 16 shows the P–R curves of several methods on the test set. The recall, precision, F1 score,
and AP of different methods are shown in Table 5. The proposed YOLO-Tomato shows the best
detection performance among all the methods. This method achieved the highest recall, precision,
and F1 score. Its AP reached 96.40%, which is higher than that of YOLOv2, YOLOv3, and Faster
R-CNN, indicating the superiority of the proposed method. The detection time of YOLO-Tomato is
0.054 s per image on average. It is about 0.17 s less than Faster R-CNN. This indicates that the model
could perform tomato detection in real time, which is important for harvesting robots.

0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

YOLOv2
YOLOv3
Faster R-CNN
YOLO-Tomato

Figure 16. P–R curve for different detection methods.

Table 5. A comparison of different tomato detection methods.

Methods Recall (%) Precision (%) F1 (%) AP (%) Time (ms)

YOLOv2 [24] 86.18 87.24 86.71 88.46 30

YOLOv3 [25] 90.89 91.60 91.24 94.06 45

Faster R-CNN [19] 91.78 92.89 92.33 94.37 231

YOLO-Tomato 93.09 94.75 93.91 96.40 54

Furthermore, the Wilcoxon signed-ranks test [37] was performed to compare different methods
with an objective to see whether the proposed method outperformed other methods with a
statistical significance.

Thirty sub-datasets were randomly sampled from the original test set, each with 80 images. Each
model was applied on the 30 sub-datasets, and the corresponding AP was calculated. The p-values for
each pair of methods were obtained using the Wilcoxon signed-ranks test. Table 6 shows the results.
The results are analyzed at a significance level of 0.05, i.e., the null hypothesis—”there is no significant
difference between the two methods” is rejected if p-value ≤ 0.05. From Table 6, one can conclude that
all pairs of methods have significant differences. Figure 17 shows the boxplot diagrams for the AP of
different methods performed on the 30 sub-datasets. It is observed that the proposed YOLO-Tomato
performed better than other methods.

Sensors 2020, 20, 2145 17 of 20

Table 6. The p-value obtained by the Wilcoxon signed-rank test for each pair of detection methods.

YOLOv2 YOLOv3 Faster R-CNN YOLO-Tomao

YOLOv2 0.000 0.000 0.000
YOLOv3 0.000 0.047 0.000

Faster R-CNN 0.000 0.047 0.000
YOLO-Tomato 0.000 0.000 0.000

YOLOv2 YOLOv3 Faster R-CNN YOLO-Tomato
Methods

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

AP

Figure 17. The AP of different methods performed on the 30 sub-datasets displayed using boxplots.
The red lines indicate the median values of AP, and ”+” indicates the outliers.

5. Conclusions and Future Work

This study proposed the use of a YOLO-Tomato detector for tomato detection, based on the
YOLOv3 model. This method is able to reduce some of the influence of illumination variation,
overlap, and occlusion. This was achieved through two approaches. The first incorporated the
dense architecture for feature extraction, which can make better reuse of features and help to learn
more accurate models. The second replaced the traditional R-Bbox with a proposed C-Bbox, better
matching the tomato shape and providing more precise IoU for the NMS process, and reducing
prediction coordinates.

Different experiments were conducted to verify the performance of the proposed method.
An ablation study of the dense architecture and C-Bbox showed the effectiveness of each modification.
Incorporating dense architecture could contribute about 2% improvement on F1 score. Based on the
dense architecture, a further adoption of C-Bbox could contribute another 0.65% improvement on the
F1 score. Experiments under different illumination and occlusion conditions were also conducted.
The proposed model showed comparable results under both sunlight and shading conditions. This
indicates the robustness of the model to illumination variation.

The model shows a divergence under different occlusion conditions. Under slight occlusion
conditions, the correct identification rate of YOLO-Tomato reaches 94.58%. This is more than 4% higher
than that of severe conditions. This was mainly attributed to the loss of semantic information by
severe occlusion.

The proposed method performed better than three other state-of-the-art methods. The superiority
of this method demonstrated that it can be applied to harvesting robots for tomato detection.

In future work, the contextual information around tomatoes will be utilized to improve the
detection performance, especially for severely occluded tomatoes. In addition, information about
tomato ripeness will be studied and incorporated to detect tomatoes in different growing stages.

Sensors 2020, 20, 2145 18 of 20

Author Contributions: Conceptualization, G.L.; validation, G.L., J.C.N., and P.L.T.M.; investigation, G.L. and
J.C.N.; data curation, G.L., J.C.N., and P.L.T.M.; formal analysis, G.L. and P.L.T.M.; methodology, G.L. and J.H.K.;
software, G.L. and P.L.T.M.; visualization, G.L. and J.C.N.; supervision, J.H.K.; writing—original draft preparation,
G.L.; writing—review and editing, G.L. and J.H.K.; project administration, J.H.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by BK21PLUS, Creative Human Resource Development Program
for IT Convergence. This work was supported by a 2-year Research Grant of Pusan National University.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

YOLO You Only Look Once
R-Bbox Rectangular Bounding Box
C-Bbox Circular Bounding Box
IoU Intersection-over-Union
NMS Non-Maximum Suppression
SVM Support Vector Machine
DCNN Deep Convolutional Neural Network
GT Ground Truth
DenseNet Dense Convolutional Network
TP True Positive
FN False Negative
FP False Positive
P–R curve Precision–Recall curve
AP Average Precision

References

1. Zhao, Y.; Gong, L.; Huang, Y.; Liu, C. A review of key techniques of vision-based control for harvesting
robot. Comput. Electron. Agric. 2016, 127, 311–323. [CrossRef]

2. Gongal, A.; Amatya, S.; Karkee, M.; Zhang, Q.; Lewis, K. Sensors and systems for fruit detection and
localization: A review. Comput. Electron. Agric. 2015, 116, 8–19. [CrossRef]

3. Linker, R.; Cohen, O.; Naor, A. Determination of the number of green apples in RGB images recorded in
orchards. Comput. Electron. Agric. 2012, 81, 45–57. [CrossRef]

4. Wei, X.; Jia, K.; Lan, J.; Li, Y.; Zeng, Y.; Wang, C. Automatic method of fruit object extraction under complex
agricultural background for vision system of fruit picking robot. Optik 2014, 125, 5684–5689. [CrossRef]

5. Kelman, E.E.; Linker, R. Vision-based localisation of mature apples in tree images using convexity. Biosyst. Eng.
2014, 118, 174–185. [CrossRef]

6. Payne, A.; Walsh, K.; Subedi, P.; Jarvis, D. Estimating mango crop yield using image analysis using fruit at
‘stone hardening’stage and night time imaging. Comput. Electron. Agric. 2014, 100, 160–167. [CrossRef]

7. Payne, A.B.; Walsh, K.B.; Subedi, P.; Jarvis, D. Estimation of mango crop yield using image analysis–segmentation
method. Comput. Electron. Agric. 2013, 91, 57–64. [CrossRef]

8. Zhao, Y.; Gong, L.; Huang, Y.; Liu, C. Robust tomato recognition for robotic harvesting using feature images
fusion. Sensors 2016, 16, 173. [CrossRef]

9. Qiang, L.; Jianrong, C.; Bin, L.; Lie, D.; Yajing, Z. Identification of fruit and branch in natural scenes for citrus
harvesting robot using machine vision and support vector machine. Int. J. Agric. Biol. Eng. 2014, 7, 115–121.

10. Kurtulmus, F.; Lee, W.S.; Vardar, A. Immature peach detection in colour images acquired in natural
illumination conditions using statistical classifiers and neural network. Precis. Agric. 2014, 15, 57–79.
[CrossRef]

11. Yamamoto, K.; Guo, W.; Yoshioka, Y.; Ninomiya, S. On plant detection of intact tomato fruits using image
analysis and machine learning methods. Sensors 2014, 14, 12191–12206. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.compag.2016.06.022
http://dx.doi.org/10.1016/j.compag.2015.05.021
http://dx.doi.org/10.1016/j.compag.2011.11.007
http://dx.doi.org/10.1016/j.ijleo.2014.07.001
http://dx.doi.org/10.1016/j.biosystemseng.2013.11.007
http://dx.doi.org/10.1016/j.compag.2013.11.011
http://dx.doi.org/10.1016/j.compag.2012.11.009
http://dx.doi.org/10.3390/s16020173
http://dx.doi.org/10.1007/s11119-013-9323-8
http://dx.doi.org/10.3390/s140712191
http://www.ncbi.nlm.nih.gov/pubmed/25010694

Sensors 2020, 20, 2145 19 of 20

12. Zhao, Y.; Gong, L.; Zhou, B.; Huang, Y.; Liu, C. Detecting tomatoes in greenhouse scenes by combining
AdaBoost classifier and colour analysis. Biosyst. Eng. 2016, 148, 127–137. [CrossRef]

13. Luo, L.; Tang, Y.; Zou, X.; Wang, C.; Zhang, P.; Feng, W. Robust grape cluster detection in a vineyard by
combining the AdaBoost framework and multiple color components. Sensors 2016, 16, 2098. [CrossRef]
[PubMed]

14. Liu, G.; Mao, S.; Kim, J.H. A mature-tomato detection algorithm using machine learning and color analysis.
Sensors 2019, 19, 2023. [CrossRef]

15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the International Conference on Neural Information Processing Systems 25, Lake Tahoe,
NV, USA, 3–6 December 2012; pp. 1097–1105.

16. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

17. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90.
[CrossRef]

18. Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. Deepfruits: A fruit detection system using deep
neural networks. Sensors 2016, 16, 1222. [CrossRef]

19. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Proceedings of the International Conference on Neural Information Processing Systems 28,
Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

20. Bargoti, S.; Underwood, J. Deep fruit detection in orchards. In Proceedings of the 2017 IEEE International
Conference on Robotics and Automation (ICRA), Singapore, 3 June 2017; pp. 3626–3633.

21. Rahnemoonfar, M.; Sheppard, C. Deep count: Fruit counting based on deep simulated learning. Sensors
2017, 17, 905. [CrossRef]

22. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of
residual connections on learning. In Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 9 February 2017.

23. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27 June 2016; pp. 779–788.

24. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 26 July 2017; pp. 7263–7271.

25. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
26. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,

Chile, 7 December 2015; pp. 1440–1448.
27. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
26 July 2017; pp. 4700–4708.

28. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv 2015, arXiv:1502.03167.

29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 30 June 2016; pp. 770–778.

30. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for
object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 26 July 2017; pp. 2117–2125.

31. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 13 April 2011; pp. 315–323.

32. Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained
part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1627–1645. [CrossRef] [PubMed]

33. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 1 November 2014; pp. 580–587.

34. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc)
challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

http://dx.doi.org/10.1016/j.biosystemseng.2016.05.001
http://dx.doi.org/10.3390/s16122098
http://www.ncbi.nlm.nih.gov/pubmed/27973409
http://dx.doi.org/10.3390/s19092023
http://dx.doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.3390/s16081222
http://dx.doi.org/10.3390/s17040905
http://dx.doi.org/10.1109/TPAMI.2009.167
http://www.ncbi.nlm.nih.gov/pubmed/20634557
http://dx.doi.org/10.1007/s11263-009-0275-4

Sensors 2020, 20, 2145 20 of 20

35. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco:
Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich,
Switzerland, 6 September 2014; pp. 740–755.

36. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

37. Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.2307/3001968
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theoretical Background
	YOLO Series
	Densely Connected Block
	The Non-Maximum Suppression for Merging Results

	Materials and Methods
	Image Acquisition
	Image Augmentation
	The Proposed YOLO-Tomato Model
	Dense Architecture for Better Feature Reuse
	Circular Bounding Box
	IoU of Two C-Bboxes
	C-Bbox Location Prediction and Loss Function

	Experimental Setup

	Results and Discussion
	Average IoU Comparison of C-Bbox and R-Bbox
	Ablation Study on Different Modifications
	The Network Visualization
	Impact of Training Dataset Size on Tomato Detection
	Performance of the Proposed Model under Different Lighting Conditions
	Performance of the Proposed Model under Different Occlusion Conditions
	Comparison of Different Algorithms

	Conclusions and Future Work
	References

